
1

Cave Game
AQA Computer Science NEA

Freddy Heppell

2

Table of Contents
1 Analysis... 4

1.1 Background .. 4
1.1.1 Text-Based Games ... 4
1.1.2 Procedural Generation ... 4
1.1.3 Cellular Automata .. 4

1.2 Description of Problem ... 5

1.3 Identification of Third Party .. 5

1.4 Requirements ... 5

2 Documented Design ... 7

2.1 Overall System Design .. 7

2.2 Coordinate Systems ... 8

2.3 Data Structures .. 8
2.3.1 Game Class .. 8
2.3.2 World Class ... 9
2.3.3 Region Class .. 9
2.3.4 Cell Class ... 9
2.3.5 Entity Class .. 10
2.3.6 Player Class ... 10
2.3.7 CombatManager Class ... 10
2.3.8 SaveManager Class .. 10
2.3.9 RegionManager Class .. 11
2.3.10 WorldCoordinate ... 11
2.3.11 Vector2 Class .. 12
2.3.12 ItemRegistry Class .. 12

2.4 Algorithms ... 12
2.4.1 Cave Generation Algorithm ... 12
2.4.2 Area-of-Effect Algorithm .. 13
2.4.3 DDA & Bresenham’s Algorithm ... 14
2.4.4 Player Spawning Algorithm ... 16
2.4.5 Damage Calculation Formula .. 17

2.5 Tools & Libraries .. 18

2.6 Data Storage .. 19
2.6.1 Save Location .. 19
2.6.2 world.json .. 19
2.6.3 rx.ry.json .. 19
2.6.4 Configuration File .. 20
2.6.5 Log Files .. 21

3 Technical Solution ... 22

3

4 Testing .. 103

4.1 Requirement Testing ... 105

4.2 Robustness Testing .. 113

5 Evaluation .. 114

5.1 Meeting Objectives .. 114

5.2 Third Party Evaluation ... 117

5.3 Enhancements .. 117

Image Attributions ... 118

Bibliography ... 119

4

1 Analysis

1.1 Background

1.1.1 Text-Based Games
A text-based game is a game that uses text characters instead of 2D or 3D graphics. Many early
games used text graphics because they are much less demanding to render. Text-based games
typically use a fixed-width environment (i.e. the terminal or command line on modern operating
systems), controlled by keypresses or key commands (opposed to mouse or controller input).

1.1.2 Procedural Generation
Procedural generation is the process of generating data using an algorithm rather than pre-creating
the data. Rogue (1980) was the first game to use procedural generation. There are two primary
approaches to procedural generation:

Random Selection Decisions (for example which enemy should appear in a room) are
made based on random number generation.

Algorithmic Generation Noise algorithms (e.g. Perlin, Simplex) generate random data which
is interpreted to build the world’s terrain. Used in games such as Minecraft to generate the world.

Many games use a combination of both. For example, Minecraft uses algorithmic generation (using
the Perlin noise algorithm) to create the terrain, but random selection to place enemies.

1.1.3 Cellular Automata
A Cellular Automaton is a model for the simulation of complex problems.
Each cell abides by certain rules, typically based on the number of
neighbouring cells. The most common form of ’neighbourhood’ is the
Moore Neighbourhood (shown right) which includes the 8 cells (red)
surrounding the home cell (blue). The home cell itself is technically part of
the neighbourhood but is usually ignored.

The most famous use of Cellular Automata is Conway’s Game of Life. This game uses the ruleset:

• A live cell with < 2 live neighbours dies
• A live cell with 2 or 3 neighbours remains live
• A live cell with > 3 neighbours dies
• A dead cell with exactly 3 live neighbours becomes a live cell

This ruleset can be described as a “2,3 ruleset”.

These changes take place simultaneously to all cells, not to each cell in turn. As this is difficult in
an algorithm, the algorithm should compute it for each cell in turn but not immediately apply

5

changes, but rather make the changes to a copy of the grid which replaces the main grid once the
iteration is complete.

1.2 Description of Problem
A game that procedurally generates an infinite cave map using cellular automata. The player can
navigate the cave, collect rewards and defend themselves against monsters.

1.3 Identification of Third Party
For my third party I have selected removed as he enjoys playing similar games. He assisted me
with devising requirements for the game.

I enjoy playing games of this genre, however most are very graphically demanding. I would like a
game of this genre that uses simpler graphics, so it can run on lower-specification computers such
as laptops. I’d like the game to have fairly simple mechanics, so I can play it casually.

1.4 Requirements
1. The user should be able to load an existing world.

1.1. The player should be able to choose the world from a list of worlds currently stored on
disk.

1.2. Upon loading, the world and character should be identical to when it was saved, including:
1.2.1. Position of player
1.2.2. Inventory of player
1.2.3. World and world state
1.2.4. Enemies
1.2.5. Chest status (opened or unopened)

2. The user should be able to start a new game
2.1. They should be asked to input a seed

2.1.1. A seed may consist of any character
2.1.2. Two worlds created with the same seed should be identical

3. The world should consist of a 2-dimensional, top-down grid
3.1. Floor cells and rock cells should be clearly differentiated
3.2. Treasure and monsters should be clearly differentiated from the environment
3.3. The game should generate new grids when the player leaves the current grid, so the world

generates infinitely.
3.4. Each of the grids should be connected to their vertical and horizontal neighbours
3.5. The grid should be procedurally generated based on the world seed
3.6. Only an area around the player should be shown, this should be set by the user’s screen

size
4. Treasure and enemies should be placed at random on the grid

4.1. They may only be placed on floor cells

6

5. The player should be able to move through the grid using the WASD keys
5.1. The game should take this input without requiring the ENTER key to be pressed

6. The player should be able to collect treasure
6.1. They will either receive a random amount of gold, or
6.2. They may receive a random item reward

7. The player should be able to attack monsters
7.1. Each monster has should have a sight radius
7.2. If the player enters the sight radius and is not obscured by an obstacle, the monster should

attack the player. If they are obscured by an obstacle, the monster should not attack.
7.3. The game should simulate a fight between the player and the monster

7.3.1. The player and monster should take turns attacking each other
7.3.2. If the player has armour equipped, it should reduce the amount of damage the

monster does to the player
7.3.2.1. When an armour point is used, it will regenerate in 2 turns time

7.3.3. If the player wins, the monster should die and the player should receive a random
reward

7.3.4. For each turn, there is a random chance of 5% the attacker will stun the defender
7.3.5. If the defender is stunned, the attacker can attack again and the defender regenerates

no armour
7.4. The rewards should be generated in the same way as chests
7.5. If the player dies, they should return to a nearby point and lose an item

8. The player should be able to see their inventory
8.1. The player should be able to check which weapon and armour is equipped
8.2. The player should be able to select which weapon they wish to equip and which armour

they wish to equip
9. The player should be able to close the game
10. The game should automatically save periodically

10.1. The save should include data defined in 1.2
10.2. The save data should be placed in an appropriate location for each operating system

7

2 Documented Design

2.1 Overall System Design

The hierarchy of classes used to store the world file.

The root class of the project (which contains the main() method executed by the JVM) is the
CaveGame class. This creates an instance of Game, which is stored statically so it can therefore be
accessed by any class within the hierarchy. For example, when a chest cell is opened it accesses
the Game instance and instructs the region it is in to resave. This is also used in the Entity system
so that entities can instruct regions which cells cause the player to enter combat.

The Game class stores an instance of the active World and Player. The world stores an instance
of RegionManager and SeedManager. The region manager is responsible for loading regions
from disk and caching them in memory. The active regions are stored in a linked hashmap (a
dictionary that maintains order), which automatically deletes the eldest entry when the maximum
size is reached. The SeedManager generates the per-region seeds used to ensure that any random
generation is consistent.

The Region stores the cells in a 2D-array and the entities within the region. Both of these may
contain items. Cells are given a reference to the Region they are in, which most cell types will
discard (some, for example Chest cells will keep this), to instruct the SaveManager to update the
save file. An example of when this is used is when the player claims a reward from a chest. Once

8

the reward has been claimed it cannot be claimed again so the save file should be updated to reflect
this.

The item system is implemented using the Singleton design pattern, which means that one instance
of the class is automatically instantiated when the class is first accessed, and all future usages of
the class use this first instance. This means that the instance of the class can be used anywhere in
the codebase without needing to pass the instance into every class that requires it. Whilst this can
be problematic in some cases (for example, it is easy to accidentally access the class prior to setup
methods being run), for a class of this type it significantly simplifies code.

2.2 Coordinate Systems
The game uses several coordinate systems. The primary coordinate system is world coordinates
(𝑥𝑥𝑤𝑤,𝑦𝑦𝑤𝑤). These are continuous across the entire world. Region coordinates (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟) represent the
regions that divide the map. Cell coordinates (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) denote the coordinates within that region
relative to the bottom left. For world and region coordinates, all integer values are valid. For cell
coordinates, only integer coordinates within the size of a region are valid. Given a world
coordinate, it is possible to calculate the other coordinate pairs, where 𝑆𝑆 is the region size.

𝑟𝑟 = �
𝑤𝑤
𝑆𝑆
�

𝑐𝑐 = 𝑤𝑤 − 𝑆𝑆 �
𝑤𝑤
𝑆𝑆
�

In Java, these operations can be performed using the floorDiv and floorMod methods from the
Math library.

The world coordinate can be found from the region coordinate and cell coordinate by calculating
the coordinate of the bottom-leftmost cell of the region (from which the cell coordinates are
numbered) and adding the cell coordinate.

2.3 Data Structures

2.3.1 Game Class
Property Type Explanation
world World The game's World instance.
player Player The game's Player instance.
seedManager SeedManager The game's instance of the SeedManager. Used to generate

seeds for regions.
gameName String The user’s chosen name for the world
logger Logger

(Final)
Log4j’s logger class

9

2.3.2 World Class
Property Type Explanation
regionManager RegionManager The region manager is responsible for loading regions

from disk and caching them.
logger Logger (Final) Log4j’s logger class

2.3.3 Region Class
Property Type Explanation
cells 2D array of Cell Stores the cells within the region. Note that this array

stores the child types of Cell rather than Cell directly.
The first index is the x value, the second is the y
value.

random Random The instance of Java's Random class used to make
random decisions for this region.
It is seeded with the region's generated seed.

entityCoordinates* Array
WorldCoordinate

An array of the coordinates of the entities within the
region

entities* Array Entity An array of the entities within the region

* These pairs of arrays are used like a dictionary, so the nth entry in one corresponds to the nth entry
in the other. This is to bypass a limitation with Gson serialisation and the JSON format.
Dictionaries do exist in JSON, but they must have a key of type String. As the keys in this case are
objects, it is not possible to serialise this directly. One option would be to convert between a
dictionary and two arrays as the region is serialised/deserialised, however this could be a resource
intensive process that would have to be performed every time the region is loaded or saved. It is
far more efficient to store them as two separate arrays.

2.3.4 Cell Class
Cell is an abstract class. This means that it cannot be directly instantiated, and most of methods
(tagged with abstract) must be overridden.

Property Type Explanation
listener WorldCoordinate The location of the entity that needs to be informed if a

player enters this cell
The ChestCell class, which extends Cell, contains the following properties:

Property Type Explanation
reward Array Item An array of the items to be given to the player when the

chest is opened.
claimed Boolean If the chest has been opened or not

10

2.3.5 Entity Class
Property Type Explanation
visibleCells Array

WorldCoordinate
A list of the cells visible to the entity

health Float The player’s current health
alive Boolean If the player is alive and has not been resurrected
armour Integer1 The amount of armour the player has
armourChange Queue2 How much armour must be restored on the next turn.

In the constructor, 0 and 0 is pushed to the queue so the
player receives no armour back on the 1st and 2nd turns.
When the armour lost in the 1st turn is added to the queue
it will be restored in the 3rd turn.

2.3.6 Player Class
Property Type Explanation
inventory Array Item The player’s current inventory
iEquippedWeapon Integer The index of the player’s currently equipped weapon
iEquippedArmour Integer The index of the player’s currently equipped weapon
location WorldCoordinate The current location of the player
moveCounter Integer The number of moves the player has made since the

last save. Used to determine when the game should
next autosave.

logger Logger (Final) Log4j’s logger class

2.3.7 CombatManager Class
Property Type Explanation
player Player The player involved in the combat
enemy Entity The entity involved in the combat
overallMultiplier Float The precomputed value of em
Turn Enum An enum of who’s turn it is, with options: PLAYER,

ENEMY
random Random The instance of random used to make random decisions
extraTurn Boolean If the current turn is an extra turn

2.3.8 SaveManager Class
Property Type Explanation

1 Note that this is the Integer class opposed to the primitive int because this cannot handle popping potentially null
values from a queue.
2 In Java, Queue is an interface. This property uses the LinkedList implementation of Queue

11

CELL_ADAPTER_FACTORY RuntimeTypeAdapterFactory
(Final)

The adapter factory the
parser uses to serialise and
deserialise the subclasses
of Cell

ITEM_ADAPTER_FACTORY RuntimeTypeAdapterFactory
(Final)

The adapter factory the
parser uses to serialise and
deserialise the subclasses
of Item

ENTITY_ADAPTER_FACTORY RuntimeTypeAdapterFactory
(Final)

The adapter factory the
parser uses to serialise and
deserialise the subclasses
of Entity

PLAYER_FILE_NAME String (Final) The name of the player
data file. Set to
“player.json”

WORLD_FILE_NAME String (Final) The name of the world
data file. Set to
“world.json”

logger Logger (Final) Log4j’s logger class

2.3.9 RegionManager Class
Property Type Explanation
regionLookupCache HashMap3

RegionCoordinate →
Boolean

A common operation is to look up whether a file
exists on disk. This property stores cached
values as to whether a region exists on disk.

regionCache LinkedHashMap4
RegionCoordinate →
Region

Stores a cache of the most recently accessed
regions. This reads the size from the config file
and removes the eldest entry if the number of
entries exceed this size.

saveDir File The save directory for this game.

seedManager SeedManager The game’s seed manager instance. Used to
create new regions with the correct seed

logger Logger (Final) Log4j’s logger class

2.3.10 WorldCoordinate
WorldCoordinate is a class designed to be used as a custom datatype. In Java, for a class to behave
like a data type it must implement certain methods (specifically equals() and hashCode()).

Property Type Explanation

3 A HashMap is Java’s dictionary implementation.
4 A LinkedHashMap is a HashMap that preserves the order the values were added to it.

12

wx Integer The world x and y coordinates

wy Integer

rx Integer The x and y coordinates of the region

ry Integer

cx Integer The x and y coordinates within the region

cy Integer

2.3.11 Vector2 Class
Vector2 is a class designed to be used as a custom datatype. In Java, for a class to behave like a
data type it must implement certain methods (specifically equals() and hashCode()). It
represents a change in a coordinate.

Property Type Explanation
dx Integer Difference of x

dy Integer Difference of y

2.3.12 ItemRegistry Class
ItemRegistry uses the Singleton pattern so that it can be accessed from the parts of the codebase
that need to.

Property Type Explanation
itemRegistry ItemRegistry The single instance of the Singleton class. This is set

when the first method is called on this class and all
subsequent method calls go to this instance.

Items Array Item A list of all the item types registered

totalWeight Double The sum of the weight of every item

logger Logger (Final) Log4j’s logger class

2.4 Algorithms

2.4.1 Cave Generation Algorithm
This algorithm was defined in the 2010 paper Cellular automata for real-time generation of infinite
cave levels [1]. This paper describes how the algorithm operates but does not provide specific
implementation details such as code or pseudocode.

13

A grid of 𝑑𝑑  ×  𝑑𝑑 cells is generated as the Base Grid, with four other grids to the north, south, east
and west. Each cell can have status rock or floor.

The base grid is initialised with random rock cell, with each cell having probability r of becoming
a rock cell. This random selection is seeded so that it can be reproduced given the same seed. If a
cell has a Moore Neighbourhood value of  ≥  𝑇𝑇, it is set as rock. Otherwise it becomes floor. This
process is reproduced for 𝑎𝑎 iterations. For each of the neighbouring grids the same procedure is
performed. To ensure it is possible to walk between the grids, the closest two floor cells on the
neighbouring grids are selected and a straight path of floor is dug between them. To smooth it the
iteration is run again 𝑏𝑏 times. Once the grids have been generated, rock cells that are directly
adjacent to floor cells are labelled as wall cells. Each time a further base grid is generated and
connected to the existing grid, the two adjacent cells are smoothed for 𝑏𝑏 iterations. The paper uses
𝑑𝑑 = 50, 𝑟𝑟 = 0.5,𝑇𝑇 = 5,𝑎𝑎 = 4, 𝑏𝑏 = 2, but these can be varied to change the appearance of the
generated caves.

During prototyping, it was found that as the parameters used in the program were different to the
paper, it was not necessary to check for connections as they appeared naturally in all cases.

2.4.2 Area-of-Effect Algorithm
Each entity has a circular area-of-effect around it, which must be registered to the EntityController.
To calculate this circle, a simple algorithm is performed. As the general equation of a circle is
𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2, if 𝑥𝑥2 + 𝑦𝑦2 ≤ 𝑟𝑟2, the point must be inside the circle or on the edge. As the radius
increases this method becomes less efficient, however with the radius size used in the program
(~5) this method is more efficient than specific algorithms.

Prototyping this algorithm found that the circles had an unsuitable shape. This is because some
parts of the circle are outside of the range when shown on a pixel grid, when they should be inside
the circle. Instead of using 𝑟𝑟2 as the right-hand-side of the inequality, the algorithm increases this
by using 1.8 × 𝑟𝑟2

FOR y in (-r+ys) … (r+ys)5 DO
FOR x in (-r+xs) … (r+xs) DO

IF x^2 + y^2 <= r^2 THEN
ADD (x,y)

ENDIF
ENDFOR

ENDFOR
Algorithm to find circle radius r, center (xs, ys)

5 Both bounds are inclusive

14

2.4.3 DDA & Bresenham’s Algorithm

These two algorithms rasterise a line (shown in black above) into a set of pixels (shown in grey
above).

The simplest method of rasterising lines is with the DDA algorithm

Let 𝑑𝑑𝑑𝑑 = 𝑥𝑥1 − 𝑥𝑥0, 𝑑𝑑𝑑𝑑 = 𝑦𝑦1 − 𝑦𝑦0

If |𝑑𝑑𝑑𝑑| > |𝑑𝑑𝑑𝑑|, 𝑆𝑆 = |𝑑𝑑𝑑𝑑| otherwise 𝑆𝑆 = |𝑑𝑑𝑑𝑑|, where S is the number of steps to be taken. This
means that if the line is moving horizontally or vertically, S is the horizontal or vertical difference
respectively.

The increments can be calculated with:

𝐼𝐼𝑥𝑥 =
𝑑𝑑𝑑𝑑
𝑆𝑆

𝐼𝐼𝑦𝑦 =
𝑑𝑑𝑑𝑑
𝑆𝑆

Then, iterating from 𝑖𝑖 = 0 → 𝑆𝑆, add 𝐼𝐼𝑥𝑥 and 𝐼𝐼𝑦𝑦 to the coordinates starting from pair 0.

However, this algorithm is inefficient because it uses float calculations. A better method,
Bresenham’s algorithm, was developed which only uses integer calculations.

IF |y1 – y0 | > |x1 – x0 | THEN
Swap the x and y coordinates within each pair

ENDIF
IF |x0 > x1| THEN

Swap the coordinate pairs
ENDIF

E ← |y1 – y0|

IF y0 > y1 THEN

S ← -1
ELSE

15

S ← 1
ENDIF

dx ← x1 – x0
e ← dx >> 1 # This is a bitwise operator for dividing by 2

FOR x in x0 … x1 DO

IF |y1 – y0| > |x1 – x0|
PLOT (y,x)

ELSE
PLOT (x,y)

ENDIF

e ← e - E

IF e < 0 THEN

y ← y + S
e ← e + dx

ENDIF
ENDFOR

Find a line between (x0, y0) and (x1, y1) using Bresenham’s Algorithm [2]
The typical version of Bresenham's algorithm works only where the gradient is between 0 and 1
(i.e. travelling rightwards more than upwards), and coordinate pair 0 is the leftmost pair (i.e.
travelling from left to right). The first two IF statements normalise the line to meet these
requirements and the IF statement within the FOR loop undoes this normalisation when the line is
plotted.

This algorithm can be used to find the shortest grid path between two cells which can be interpreted
as line-of-sight. In the game, when the player enters the detection radius of an enemy the game
draws a cell line from the enemy to the player and checks if any of the cells in this line are marked
as impassable. However, there are some cases in which this algorithm returns the incorrect result.
The algorithm can find a line of sight through diagonal walls even if it is blocked (see below). To
avoid this, checks should be performed to ensure that the line does not pass through diagonal 'gaps'.

16

2.4.4 Player Spawning Algorithm
The player should be spawned at (0,0) when they first enter the map, however this may not be
possible if the cell (0,0) is rock. Each child class of Cell defines an isSpawnAllowed() method
which returns a Boolean value indicating if the player can be spawned on that cell.

To find the cell to spawn the player on, the game checks cells using a clockwise spiral pattern.
This algorithm is normally used to construct an Ulam Spiral [3], this implementation removes the
primality check.

a ← CEIL((ROOT(n)-1)/2)
t ← 2a + 1
c ← t^2
t ← t -1

IF n >= (c - t) THEN

RETURN ((a – (c-n)), (-a))
ELSE

c ← c – t
ENDIF

IF n >= (c - t) THEN

RETURN ((-a), (-a + (c - n)))

17

ELSE
c ← c – t

ENDIF

IF n >= (c - t) THEN

RETURN ((-a + (c-n)), a)
ELSE

RETURN (a, (a-(c-n-t)))
ENDIF

Finding the nth cell of the spiral
This algorithm is modified to spawn entities, but the x and y coordinates are added to the center of
each region.

2.4.5 Damage Calculation Formula
The player can equip armour to give them protection against damage. Each point of armour reduces
one point of damage by 30% (= 𝑒𝑒). Once an armour point has been used it is consumed for the
next turn.

Let 𝑑𝑑 = the raw amount of damage done

𝐷𝐷 = the actual amount of damage done

𝑎𝑎 = the armour points available

𝑚𝑚 = the damage multiplier

𝑒𝑒 = armour blocking amount

𝐷𝐷 = 𝑑𝑑 − 𝑒𝑒𝑒𝑒 ∙ min (𝑑𝑑,𝑎𝑎)

To minimum function is used to calculate the amount of armour used:

• If the amount of armour is greater than the raw damage, only armour up to the damage
amount will be used

• If the raw damage is greater than the amount of armour, only the amount of armour that
the player has can be used

𝑒𝑒𝑒𝑒 is a constant value throughout the game, so it can be pre-calculated.

After each turn, a random decimal value is computed. If this value is less than 0.1, the attacker of
that turn can have another turn. The defender will not regenerate any armour.

18

Damage values for combinations of weapon and armour, assuming the full value of armour is available

2.5 Tools & Libraries
Several external libraries are used for the project. Most libraries are included using Gradle, except
for those specified. These are the top-level libraries used for the project, they may themselves
include further libraries which are not directly used by the project.

Gradle

The project is built using the Gradle build system. This allows packages to be easily included from
Java’s Maven repository and creates automatic builds of the project including all libraries.

gson

Gson is a JSON parsing library created by Google. The library can serialise objects into JSON
strings automatically, and then convert JSON strings back into objects. The library is used to save
and load game data.

RawConsoleInput

RawConsoleInput is a single-file library to read keypresses from Windows and UNIX-like (e.g.
macOS, Linux) consoles. This library means that user inputs can be processed as soon as the key
is pressed, without the ENTER key needing to be used. This is a single-file library and not available
from Maven, so it is included in the codebase under the original biz.source_code.utils namespace.

JNA

JNA is a library to use native shared libraries entirely in Java. It is used by the RawConsoleInput
library.

Log4j

Monster

W
oo

d

Iro
n

Iro
n

In
fu

se
d

R
eg

ul
ar

3 7 10 14 7
None 0 3 7 10 14 7

Leather 5 2.1 5.5 8.5 12.5 5.5
Chainmail 8 2.1 4.9 7.6 11.6 4.9

Iron 10 2.1 4.9 7 11 4.9
Infused 12 2.1 4.9 7 10.4 4.9

Damage Against Player

Sh
ie

ld
in

g

Player
Attack Damage

19

Log4j is a logging package for Java. It allows the program to write various severities of logs to
disk, and automatically moves old logs into dated files.

JLine3

JLine is a library to interact with the command line. This is used to get the dimensions of the
command line. Usage of this library was discontinued due to an issue discussed in the Testing
section.

Cloning

This library is used to clone Item objects when they are added to the player’s inventory. This
library includes the objenesis library.

2.6 Data Storage

2.6.1 Save Location
The game stores data in system folders typical for each operating system. On windows, this is
C:\Users\Username\Appdata\Roaming\CaveGame. On mac OS
~/Library/Application Support/CaveGame and ~/.CaveGame on Linux. If the program
is unable to determine the OS it will create a CaveGame subfolder in the current directory. This is
the root folder in which the game stores all data including world folders and the preferences
override file.

2.6.2 world.json
The world.json file contains data associated with the entire world. It contains the following data:

Key Example Explanation
worldName “Testing

World”
The world's name as a string. This cannot be found from the
name of the world folder as not all characters are permitted
in directory names.

configurationHash XwWDK… The hash of the merged configuration file at the time of the
world's creation. Certain configuration parameters (e.g.
region size) change how regions are loaded. If they are
changed the program may not work properly. This hash is
base64 encoded.

worldSeed “abc123” The world’s global seed as a string
This file is not generated with Gson’s automatic serialisation, as none of the properties of this class
need to be saved directly. The JSON is generated with the WorldSerialiser class from the
World object, and deserialised into a String → String HashMap.

2.6.3 rx.ry.json
The files for each region are serialised and deserialised by Gson. The primary advantage of this
library is that it can automatically recursively serialise an object and the object's properties, and

20

then deserialise back into an instance of the same object completely automatically. For parts of the
game where polymorphism is used (for example types of cells), Gson is unable to determine which
child class to use as the property types only specify the parent class. For this, Gson provides
RuntimeTypeAdapters, where each child-type is assigned a value which is then used to determine
which child class should be used.

{
 "regionCoordinate":{"rx":0,"ry":0},
 "cells":[
 [
 {"t":"f"},
 {"t":"f"},
 {"t":"f"},
 ...
 {
 "t":"c",
 "reward":[
 {
 "t":"SwordItem",
 "tier":"Steel",
 "damage":8
 },
 {
 "t":"ArmourItem",
 "tier":"Leather",
 "shielding":5
 }
],
 "claimed":false
 },
 ...
 "entityCoordinates":[
 {"wx":22,"wy":22,"rx":0,"ry":0,"cx":22,"cy":22}
],
 "entities":[
 {"t":"m","health":30.0,"armour":0,"armourChange":[0,0]}
]
}

Example of a region file

2.6.4 Configuration File
The game stores a number of key values in configuration files. The default configuration file is
bundled within the game's .jar file, however this can be overridden by adding the properties to the

21

cavegame.properties file created in the root folder. The .jar file also contains a default
template for this override file which will be placed in the correct location if it does not exist.

Each file is a .properties file using Hungarian Notation for the keys, with each prefix corresponding
to a Java datatype (e.g. i for integer, s for string).

iRegionSize=50
iRegionCacheSize=8
iRegionIterationCount=2
iCellDeathThreshold=5
fRandomBoundary=0.5
fChestSpawnBoundary=0.995
bShouldClearScreen=true
fFrameSleepTime=0.75
iChestMaxItems=2
iPlayerSaveFrequency=5
fArmourProtection=0.3
fDamageMultiplier=1.2
fCombatStunProbability=0.1
bShowDebugInfo=false
lTurnSleepTime=500

The default configuration file

2.6.5 Log Files
The log4j file stores output logs in a logs directory in the location that the executable is run. The
active logfile is named cavegame.log, with older log files being renamed with the date they were
finished.

A minimum log level to store is configured, for development this was set to TRACE, the lowest
level so that everything would be logged. For an actual release this should be set to INFO.

Each log entry contains the following information:

• Severity level (DEBUG, INFO, WARN, FATAL etc.)
• Timestamp
• Active thread
• Class that triggered the log
• Log message

[DEBUG] 2018-01-01 09:00:00.000 [main] Region - Getting entity at
W:(102,138), R: (2, 2), C: (2, 38)

Example of a log entry

22

3 Technical Solution
config/Config.java .. 23
entities/CombatManager.java ... 27
entities/Entity.java .. 31
entities/Monster.java ... 35
entities/Player.java .. 36
input/EnumKey.java ... 43
items/ArmourItem.java ... 45
items/GoldItem.java ... 46
items/Item.java ... 47
items/ItemRegistry.java .. 49
items/SwordItem.java ... 53
save/SaveManager.java .. 54
save/WorldSerialiser.java ... 60
utility/Console.java ... 61
world/cells/Cell.java ... 65
world/cells/ChestCell.java .. 67
world/cells/EmptyCell.java .. 69
world/cells/FloorCell.java .. 70
world/cells/RockCell.java ... 71
world/coord/CellCoordinate.java .. 72
world/coord/CoordinateProperties.java .. 73
world/coord/RegionCoordinate.java ... 75
world/coordinate/Vector2.java ... 77
world/coord/WorldCoordinate.java .. 78
world/OutputFrame.java ... 81
world/Region.java ... 83
world/RegionManager.java .. 88
world/SeedManager.java .. 92
world/World.java .. 94
CaveGame.java ... 97
Game.java ... 98

The source code of the solution is listed below in alphabetical order of file name. The file CaveGame.java is the
main class.

The key algorithms are in the following files:

2.4.1 Cave Generation Algorithm: iteration() method in world/Region.java.

2.4.2 Area-of-Effect Algorithm: calculateVisibleCells() method in entities/Entity.java.

2.4.3 Bresenham’s Algorithm: hasLineOfSight() method in world/World.java.

2.4.4 Player Spawning Algorithm: getSpiralCoordinate() method in
world/coord/CoordinateProperties.java.

2.4.5 Damage Calculation Formula: calculateDamage() method on entities/Entity.java.

Code listings removed
See:

https://github.com/freddyheppell/cavegame

https://github.com/freddyheppell/cavegame

103

4 Testing
Spawning Monsters

Test Of: The generateEntities() method of Region

Expected Result: Once monster is placed close to the centre of the Region in a valid cell

Actual Result: Failed, The game enters an infinite loop of creating the region the monster is in

Debugging Process: To find the source of the issue, I raised an exception within the method to see
why it was being recursively called. I discovered that it was caused by the location-finding
algorithm. When this algorithm tested if a cell was valid, it called the getRegion() method.
This will create a region if it does not already exist. At the point that the generateEntities()
method was being run, the region had not been saved, therefore the getRegion() method
attempted to create it again, which itself called the generateEntities() method. This process
repeated until the call stack overflowed. To resolve this, the entities are generated after the
region has been saved, then the region is resaved.

The log files showing that the region is repeatedly loaded

Revised Result: The entity is correctly generated

Calculating Monster Area-of-effect

Test Of: The system to detect if a player is within range of a monster

Expected Result: The monster is shown with a circle (radius 3) of exclamation marks surrounding
it (added temporarily to indicate the area)

Actual Result: Failed, only the area-of-effect is shown until the game is restarted, then only the
monster is shown.

104

Debugging Process: I began by inspecting the save file to see what was being saved. The location
of the monster was being saved correctly in the region, but the fact that the cells were triggers
were not saved. By first saving the region immediately after the entity is added and then again
to each region

Revised Result: The game correctly shows both the area of effect and the entity

Checking Line of Sight

Test Of: world.HasLineOfSight()

Expected Result: If the line between the monster and player is not interrupted, the function will
return true.

Actual Result: The function inconsistently returns true or false if the line of sight is interrupted

Debugging Process: I began by logging what cell caused the line-of-sight to be broken, and
specifically what type of cell that was. I found that the logs reported the line of sight was
always blocked by a rock cell at the same location as the entity. I discovered that the checking
process to see if an entity was valid was incorrect, it would only spawn entities on cells that
were not valid for spawning.

Revised Result: The game correctly finds the line of sight when not interrupted, and does not find
line of sight when it is interrupted.

Typing Delay issues in Windows

During testing it was noted that on Windows, there was a delay of 2-3 seconds where it was not
possible to enter text at prompts (e.g. the movement prompt). Using Git, I was able to perform
regression tests to discover when this issue was introduced. I found that the issue was
introduced in the commit where I began autodetecting the height and width of the user’s
terminal. By systematically undoing the changes made in this commit, I was able to determine
that this issue was caused by the JLine library. Binding an instance of JLine’s Terminal class
to the terminal caused a permanent delay on all input. I removed the library and implemented
a manual method to set the width and height.

105

4.1 Requirement Testing
The requirements are reproduced below. The requirements that are being specifically tested are in bold.

Inputs Expected Result Actual Result Notes
 1. The user should be able to load an existing world.

1.1. The player should be able to choose the world from a list of worlds currently stored on disk.
Enter 1 on main menu The user is shown a list of worlds

that they select from. Selecting a
world loads it

As expected

1.2. Upon loading, the world and character should be identical to when it was saved, including:

1.2.1. Position of player
1.2.2. Inventory of player
1.2.3. World and world state
1.2.4. Enemies
1.2.5. Chest status (opened or unopened)

Create a new world, collect a
nearby chest, fight a nearby enemy.
Close the world and reopen.

The world state is identical As expected Due to the way saving is
implemented, the position may not
be exact. This is because the
player’s location is saved every 5
moves. In this case I intentionally
made the necessary moves to reach
this threshold.

Before reloading After reloading

106

Inputs Expected Result Actual Result Notes

2. The user should be able to start a new game

2.1. They should be asked to input a seed
2.1.1. A seed may consist of any character
2.1.2. Two worlds created with the same seed should be identical

Select 2 on the main menu. Enter
the world name “test”, with seed
“123”. Close the world. Create a
world with name “test2” and seed
“123”

The worlds should be identical As expected

107

Inputs Expected Result Actual Result Notes

3. The world should consist of a 2-dimensional, top-down grid

3.1. Floor cells and rock cells should be clearly differentiated
3.2. Treasure and monsters should be clearly differentiated from the environment

Generate a world Floor, walls, chests and enemies
should be displayed as different
characters.

As expected “#” shows walls, floors are shown
by empty space, “C” shows
characters and “M” shows
monsters

108

Inputs Expected Result Actual Result Notes
4. Treasure and enemies should be placed at random on the grid

4.1. They may only be placed on floor cells
Generate a world Monsters and chests will have been

placed randomly
As expected

5. The player should be able to move through the grid using the WASD keys

5.1. The game should take this input without requiring the ENTER key to be pressed
Create a new world and enter W, A,
S and D

The player should move up, down,
left and right

As expected Screenshots show result of pressing
D

109

Inputs Expected Result Actual Result Notes
6. The player should be able to collect treasure

6.1. They will either receive a random amount of gold, or
6.2. They may receive a random item reward

Walk onto a chest cell The player’s inventory gains gold
or an item reward

The player gained Iron Armour In the screenshots below, the player
gains leather armour from a chest.

7. The player should be able to attack monsters

7.1. Each monster has should have a sight radius
7.2. If the player enters the sight radius and is not obscured by an obstacle, the monster should attack the player. If they are
obscured by an obstacle, the monster should not attack.

Enter radius 3 of a monster whilst
not in line of sight. (a)
Enter radius 3 of a monster whilst
in line of sight. (b)

An obstructed view should not
trigger combat.
An unobstructed view should
trigger combat.

As expected For screenshot (b), moving up one
cell triggers combat.

(a) (b)
7.3. The game should simulate a fight between the player and the monster

7.3.1. The player and monster should take turns attacking each other
7.3.2. If the player has armour equipped, it should reduce the amount of damage the monster does to the player

7.3.2.1. When an armour point is used, it will regenerate in 2 turns time
7.3.3. If the player wins, the monster should die and the player should receive a random reward
7.3.4. For each turn, there is a random chance of 5% the attacker will stun the defender
7.3.5. If the defender is stunned, the attacker can attack again and the defender regenerates no armour

110

Inputs Expected Result Actual Result Notes
Create a world, find a monster and
enter its sight radius

The game simulates combat in
accordance with the requirements

As expected The full output of combat is
reproduced below. The sections
that provide evidence of each
requirement is indicated.

8. The player should be able to see their inventory

8.1. The player should be able to check which weapon and armour is equipped
8.2. The player should be able to select which weapon they wish to equip and which armour they wish to equip

111

Inputs Expected Result Actual Result Notes
Collect several chests.
Enter the equip command
“e<number>” to equip armour and
a weapon.

The armour and weapon should be
marked as equipped in the
inventory

As expected The user has collected several
items, the first two are the default
items they spawn with.

9. The player should be able to close the game
Press “x” within a game The game will close and return the

user to their terminal
As expected If the user is running the game from

a provided build (i.e. the windows
bundled executable) the window
will just close.

10. The game should automatically save periodically

10.1. The save should include data defined in 1.2
10.2. The save data should be placed in an appropriate location for each operating system

Move the player by five cells Upon reopening the game, the
player is in the same location

As expected

112

Inputs Expected Result Actual Result Notes

113

4.2 Robustness Testing
World Command Input

 Entering an invalid command (e.g. “q”) causes the game to request input again. It does not,
however, alert the player that their input is invalid.

 Entering a valid command that is invalid in this context (e.g. attempting to walk into a rock
cell) causes the game to request input again

Inventory Command Input

 Entering an unknown command alerts the user that the command is invalid and requests
input again

 Attempting to equip a non-existent item (e.g. equipping “5” when only 4 items are in
inventory) asks the user for input again

 Attempting to equip a non-equippable item alerts the user
 An entry query crashes the game, which should be fixed in future

Main Menu Input

 Entering an out-of-range number asks the user for input again
 Entering a non-integer asks the user for input again

Load Screen Input

 Entering an out-of-range number, (e.g. loading world 5 when there are only 4 worlds)
prompts the user again

 Entering a non-number prompts the user to enter the number again
 Entering the name of an existing world will load it instead

Create Screen Input

 Entering nothing is a valid input, which causes the world information to be placed in the
root folder

 It is possible to enter a world which contains invalid characters for an operating system
(e.g. “\” on Windows)

114

5 Evaluation

5.1 Meeting Objectives
Overall, the project meets almost all of the objectives. The only objectives that are not met are due
to limitations with the Java language’s ability to directly interact with the Operating System.

The solution’s requirements are listed below, with comments as to how well the objectives have
been met in italics.

1. The user should be able to load an existing world.
1.1. The player should be able to choose the world from a list of worlds currently stored on

disk.
The user is shown a list of valid world folders (a valid world folder contains a world.json
file) and they can choose from this list by entering a number. The game currently does not
attempt to validate this data (i.e. checking if the JSON files are valid JSON), which would
make the solution more robust.

1.2. Upon loading, the world and character should be identical to when it was saved, including:
1.2.1. Position of player
1.2.2. Inventory of player
1.2.3. World and world state
1.2.4. Enemies
1.2.5. Chest status (opened or unopened)

All of the required data is saved in the region files and the player file.

2. The user should be able to start a new game
2.1. They should be asked to input a seed

2.1.1. A seed may consist of any character
2.1.2. Two worlds created with the same seed should be identical

All random generation used to generate the world either uses this seed directly, or from
data based upon this seed (Regions append their coordinates to the seed). The only part of
the application that does not use this data is combat, which uses an automatic seed.

3. The world should consist of a 2-dimensional, top-down grid
3.1. Floor cells and rock cells should be clearly differentiated

Floor cells are shown as blank spaces, rock cells are shown as “#”s
3.2. Treasure and monsters should be clearly differentiated from the environment

Treasure is shown as “C” on the map, until it is used, then it is not shown. Monsters are
shown as “M” until they die, then they are not shown.

3.3. The game should generate new grids when the player leaves the current grid, so the world
generates infinitely.

115

The player can travel effectively-infinite distances. The only limit to this is Java’s integer
maximum, 2,147,483,647. If the game attempts to render a cell beyond this point, it will
hang indefinitely. However this would take a significant amount of time and require at
least 1TB of hard disk space.

3.4. Each of the grids should be connected to their vertical and horizontal neighbours
The regions appear seamless to the player, with no interruptions transitioning between
regions.

3.5. The grid should be procedurally generated based on the world seed
The coordinates for each region are appended to the world seed to get the seed for each
region

3.6. Only an area around the player should be shown, this should be set by the user’s screen
size
This feature was in the solution initially, using the JLine library. This works by binding a
virtual terminal to the user’s terminal, from which the height and width can be read. This
solution worked on mac OS and Linux, but caused a significant delay entering inputs on
Windows. Due to this, this feature had to be removed. Currently the height and width are
hardcoded.

4. Treasure and enemies should be placed at random on the grid
One enemy is placed in each region, at a location closest to the centre as possible. Floor cells
have a 0.5% chance of turning into treasure chests.
4.1. They may only be placed on floor cells

5. The player should be able to move through the grid using the WASD keys
5.1. The game should take this input without requiring the ENTER key to be pressed

This requirement has been partially met. The player can control their characters with the
WASD keys, but ENTER-less movement is only works on Windows. On mac OS and Linux,
this does not appear to be possible without code written in a lower level language.

6. The player should be able to collect treasure
6.1. They will either receive a random amount of gold, or
6.2. They may receive a random item reward

When the player enters a chest cell, they receive a random reward from the whole pool of
available items including gold.

7. The player should be able to attack monsters
7.1. Each monster has should have a sight radius

The sight radius is configurable for each type of monster. Currently only one type exists
with a radius of 3.

7.2. If the player enters the sight radius and is not obscured by an obstacle, the monster should
attack the player. If they are obscured by an obstacle, the monster should not attack.
The game will test for line-of-sight if the player enters the sight radius of a monster. This
test works for all unambiguous cases but can produce disputable results in some
ambiguous cases, for example line of sight along a diagonal wall.

116

7.3. The game should simulate a fight between the player and the monster
7.3.1. The player and monster should take turns attacking each other
7.3.2. If the player has armour equipped, it should reduce the amount of damage the

monster does to the player
7.3.2.1. When an armour point is used, it will regenerate in 2 turns time

7.3.3. If the player wins, the monster should die and the player should receive a random
reward

7.3.4. For each turn, there is a random chance of 5% the attacker will stun the defender
7.3.5. If the defender is stunned, the attacker can attack again and the defender regenerates

no armour
The combat system works, however combat can last too long (20-30 seconds) in some
cases. Ideally this should be shortened by either increasing attack damage or
reducing the effect of shielding.

7.4. The rewards should be generated in the same way as chests
These rewards are generated in the same way as the chest rewards

7.5. If the player dies, they should return to a nearby point and lose an item
The player is respawned as close to the centre of the current region as possible. They do
not lose an item as, during playtesting, it was found that it felt unfair for the player to lose
an item at random.

8. The player should be able to see their inventory
8.1. The player should be able to check which weapon and armour is equipped
8.2. The player should be able to select which weapon they wish to equip and which armour

they wish to equip
The player can manage their inventories through an interactive menu. The user can type
“eN” to equip item N into the appropriate slot.

9. The player should be able to close the game
10. The game should automatically save periodically

The game saves every 5 moves. The project could be improved by adding manual save
functionality, however this isn’t particularly necessary for this type as game as there is not
much that is actually modified other than the position of the player.
10.1. The save should include data defined in 1.2
10.2. The save data should be placed in an appropriate location for each operating system

The save data is stored in the standard location for Windows, mac OS and Linux. In
Windows, this is the AppData/Roaming folder, Application Support on macOS. On Linux,
there is no real standard location, so it stores save data in a .CaveGame directory in the
user folder.

117

5.2 Third Party Evaluation
How easy is it to use the game?

It is very easy to play the game because it has simple controls and mechanics.

How does the system meet the objectives?

The system meets all of the objectives except for it requiring the enter key to be pressed on non-
Windows systems.

What improvements would you suggest?

With more time, adding more variety to the types of monsters and items to the game. More variety
would allow the game’s combat to be more advanced, for example to make some weapons better
against types of monsters.

5.3 Enhancements
Certain areas of the project have been designed flexibly, to allow for the possibility of future
enhancement. Some examples of possible enhancements are shown below:

Multiplayer: Allow a player to, as well as playing the game themselves, host the game on the
local network so that other players can join. Implementing this within the existing code would be
relatively easy, as most methods that interact with the player do so with passed parameters. If there
are multiple players in the game, then the player passed to the functions can be modified to allow
this.

Moving Monsters: Currently, monsters are stationary in the world, and therefore easily avoidable.
The game could be modified so that monsters move around the world, requiring the player to
actively avoid them or decide to kill them. It would be challenging to implement real-time
movement into the game, as currently the game waits for user input before continuing.

Different Types of Monsters: In the current solution, all monsters are the same generic
“Monster”, with the same attack damage and shielding. The game could be improved by adding
several different types. This would again be relatively easy, as a type of monster is simply a class
that inherits from the abstract Entity class, with the monster’s parameters specified by certain
methods on the class.

Better Rendering System: Using the system terminal isn’t an ideal environment for a game. If an
emulator was used instead, keypresses without requiring ENTER would be possible on all
platforms, as would using Unicode characters for cells.

118

Image Attributions
Moore Neighbourhood Diagram

https://commons.wikimedia.org/wiki/File:Moore_neighborhood.svg

Bresenham’s Algorithm Diagram

https://commons.wikimedia.org/wiki/File:Bresenham.svg

https://commons.wikimedia.org/wiki/File:Moore_neighborhood.svg
https://commons.wikimedia.org/wiki/File:Bresenham.svg

119

Bibliography

[1] L. Johnson, G. N. Yannakakis and J. Togelius, “Cellular automata for real-time generation of
infinite cave levels,” 2010. [Online]. Available:
http://julian.togelius.com/Johnson2010Cellular.pdf.

[2] K. I. Joy, “Breshenham's algorithm,” [Online]. Available:
http://www.idav.ucdavis.edu/education/GraphicsNotes/Bresenhams-Algorithm.pdf.

[3] Wolfram Research, Inc., “Prime Spiral,” [Online]. Available:
http://mathworld.wolfram.com/PrimeSpiral.html.

	1 Analysis
	1.1 Background
	1.1.1 Text-Based Games
	1.1.2 Procedural Generation
	1.1.3 Cellular Automata

	1.2 Description of Problem
	1.3 Identification of Third Party
	1.4 Requirements

	2 Documented Design
	2.1 Overall System Design
	2.2 Coordinate Systems
	2.3 Data Structures
	2.3.1 Game Class
	2.3.2 World Class
	2.3.3 Region Class
	2.3.4 Cell Class
	2.3.5 Entity Class
	2.3.6 Player Class
	2.3.7 CombatManager Class
	2.3.8 SaveManager Class
	2.3.9 RegionManager Class
	2.3.10 WorldCoordinate
	2.3.11 Vector2 Class
	2.3.12 ItemRegistry Class

	2.4 Algorithms
	2.4.1 Cave Generation Algorithm
	2.4.2 Area-of-Effect Algorithm
	2.4.3 DDA & Bresenham’s Algorithm
	2.4.4 Player Spawning Algorithm
	2.4.5 Damage Calculation Formula

	2.5 Tools & Libraries
	2.6 Data Storage
	2.6.1 Save Location
	2.6.2 world.json
	2.6.3 rx.ry.json
	2.6.4 Configuration File
	2.6.5 Log Files

	3 Technical Solution
	config/Config.java
	entities/CombatManager.java
	entities/Entity.java
	entities/Monster.java
	entities/Player.java
	input/EnumKey.java
	items/ArmourItem.java
	items/GoldItem.java
	items/Item.java
	items/ItemRegistry.java
	items/SwordItem.java
	save/SaveManager.java
	save/WorldSerialiser.java
	utility/Console.java
	world/cells/Cell.java
	world/cells/ChestCell.java
	world/cells/EmptyCell.java
	world/cells/FloorCell.java
	world/cells/RockCell.java
	world/coord/CellCoordinate.java
	world/coord/CoordinateProperties.java
	world/coord/RegionCoordinate.java
	world/coordinate/Vector2.java
	world/coord/WorldCoordinate.java
	world/OutputFrame.java
	world/Region.java
	world/RegionManager.java
	world/SeedManager.java
	world/World.java
	CaveGame.java
	Game.java

	4 Testing
	4.1 Requirement Testing
	4.2 Robustness Testing

	5 Evaluation
	5.1 Meeting Objectives
	5.2 Third Party Evaluation
	5.3 Enhancements

	Image Attributions
	Bibliography
	Blank Page

