# Wiki / Primes

Primes discovered through PrimeGrid.

## Arithmetic Progressions

Arithmetic progressions where each value is a prime number in the given range, where $\#$ is the primorial function.

• $198699010224649591+132990904 \times 23 \# \times n$ for $n=0 \dots 20$
• $14343243602832611+132836468 \times 23 \# \times n$ for $n=0 \dots 20$
• $90800225937875341+102135507 \times 23 \# \times n$ for $n=0 \dots 19$
• $123138995629134323+100516277 \times 23 \# \times n$ for $n=0 \dots 19$
• $113949777820251911+100621320 \times 23 \# \times n$ for $n=0 \dots 19$
• $64677846611113573+100195975 \times 23 \# \times n$ for $n=0 \dots 19$
• $125878923241966481+99664734 \times 23 \# \times n$ for $n=0 \dots 20$
• $83679938973105967+98675054 \times 23 \# \times n$ for $n=0 \dots 19$
• $137816622617609423+94398218 \times 23 \# \times n$ for $n=0 \dots 19$
• $185462157832861163+94077889 \times 23 \# \times n$ for $n=0 \dots 19$
• $121823503357239799+92229038 \times 23 \# \times n$ for $n=0 \dots 20$
• $192015949708541813+92229070 \times 23 \# \times n$ for $n=0 \dots 19$
• $171204312030307313+91635561 \times 23 \# \times n$ for $n=0 \dots 19$
• $102437697430032883+91704986 \times 23 \# \times n$ for $n=0 \dots 19$